STRUCTURE-CONTINUOUS CONCEPT IN THE
RHEOLOGY OF POLYMER SUBSTANCES
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Rheological equations of state are postulated for weak suspensions of rigid ellipsoidal par-
ticles on the basis of the structure-continuous concept.

In setting up the rheological equations of state for polymer substances one usually starts out from
either of two alternative concepts. The first concept is a phenomenological (macroscopic) one based on
the premise that the medium under consideration is continuous. The rheological equations of state are
derived here from the general laws of mechanics and phenomenological thermodynamics with certain
assumptions concerning the given medium (isotropy, elasticity, etc.). The rheological constants or the
rheological functions for this substance which appear in those equations are determined experimentally.
Without dwelling on an enumeration of existing phenomenological theories for the rheology of polymers,
we will refer here to a rather complete survey of such theories in [1] by Truesdell and Noll.

The other concept — a structural (microscopic) one — defines the rheological behavior of complex
substances in terms of known rheological properties of their components, with the macroscopic proper-
ties expressed by average microscopic characteristics. This concept has been elaborated successfully,
for instance, in developing the theory of rigid balls or ellipsoids in a dilute suspension. Such substances
include various colloidal suspensions, certain biopolymer solutions, and also solutions of particles with
a supermolecular structure (e.g., particles of various viruses or micellar aggregates of molecules) [2].

It has been suggested in the works by Einstein [3], Jeffery [4], Peterlin [5], Kuhn [6], Saifo [7], and
Pokrovskii [8, 9] that the solid phase consists of rigid balls [3] or monodispersed ellipsoids 4, 5, 6, 7, 8, 9]
while all the remaining space is filled with a Newtonian liquid. It is also suggested that the dimensions of
the rigid particles in suspension are much larger than the dimensions of the solvent molecules (but suf-
ficiently small to be subject to a rotational Brownian motion [5, 6, 7, 8, 9]) — thus one may treat the sol-
vent as a continuous medium and apply the equations from the mechanics of continuous media. The ap-
plicability of the said theories is limited to dilute suspensions, since interaction between particles of the
solid phase is not faken into account.

Where polymer substances are concerned, the structural theories, which are capable of relating
all rheological characteristics to the molecular structure of the medium, are natually preferred to the
phenomenological theories including information about the molecular structure on an a priori basis. In
many cases, however, where the molecular structure of the medium is sufficiently complex to make the
development of a structural theory very difficult, a phenomenological concept remains the only feasible
one.

A number of models has been proposed during the last 10-15 years which can be classified as struc-
ture-continuous ones [10-21]. The first attempts at agglomerating the particles of a continuum into a struc-
ture were made by Duhem [22]. His ideas were further developed in the theory of an elastic medium by
Cosserat [23], where every particle has six degrees of freedom so that a possible spatial orientation of
particles can be accounted for. This theory was put into a final form in [24].

The idea of using a structural continuum for studying the motion of a liquid which contains a flexible
or rigid substructure (colloidal solutions, high-polymer solutions) must be credited to Anzelius [25].
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Ericksen has developed this idea into his theory of anisotropic liquids [17, 18]. In order to describe the
possible orientations and deformations of substructure particles in the liquid, Ericksen introduces at
every point in the liquid an orientation vector n. Postulating the dependence of the stress tensor tjj com-
ponents on the strain rate tensor dijj components and on the direction vector n = {ni}, he derives equa-
tions which define a simply anisotropic liquid (with an unstrainable substructure [n| = 1):

ti]' = paij -+ 2pdi_’i + (p’l + ”2dkmnhnm) nin; + 2!«’-3 (d,-knhni + diknknj), (1)

;zi = oyt; + A(djn; —dymn,n) (2)
on the basis of the invariance principle [26] and of the results obtained by Rivlin [27].

The rheological constants p, Ky, Mg, Hg, A are determined by experiment or by juxtaposition with
other theories.

In this article Egqs. (1), (2) defining a simple anisotropic liquid wiil be applied to obtain the rheological
equations of state for suspensions of rigid ellipsoidal particles. The rheological constants are determined
with the aid of the structural theory by Jeffery [4] if the equivalent radius of the ellipsoidal particles r

3
=Vaht > 4+10~% m*) or with the aid of the Saito theory [7] when r < 10~° m.
It has been shown in [4] that, in the Stokes approximation, the equations of motion for a rigid el-
lipsoid suspended in an incompressible Newtonian liquid which flows with shear
v,=0, v,=Kx, v,=0; K = const, (3)

are

mq,zci)=—§—(l+q(:052q>), (4
)

wazés ~[4i-qsin2qasin29.

It has been assumed here that the transport velocity of the ellipsoid is the same as the velocity of the liquid.

It follows from these equations, which have been verified experimentally by Mason [28], that el-
lipsoidal particles orient themselves kinematically along the direction of flow. The orientation of particles
is characterized here by the position distribution function of the major axes p(¢) determined from Eq. (5)
[29]:

E"im (@) ¢l = 0. (5)
P

When the particles have an equivalent radius r < 107% m [5], it becomes necessary to take into ac-
count their rotational Brownian motion, which impedes this orientation. I[n that case the orientation of a
particle is characterized by the distribution function F(¢, 6) which the Fokker —Planck equation of steady
state

D,AF = div (Fa) (6)
defines.

When one considers the shearing flow (3) of a simple anisotropic Ericksenian liquid (1), 2) at |A]
= 1, it is easy to ascertain that the equations of orientation (2) are the same as the equations of motion
for a rigid ellipsoid suspended in an incompressible Newtonian liquid which flows with shear (3). Indeed,
when

n,=cosg sin®, n,=singsin®, n,=cosb,

Egs. (2) for the flow (3) are the same as the Jeffery equations [4]. The orientation vector n here coincides
directionally with the major axis of the ellipsoid (Fig. 1) while the constant A = g. The identicity of the

* Suspensions are classified according to the equivalent radius of ellipsoidal particles when water is the
solvent (uy = 0.001 N-sec/m?) [5].
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| Ericksen equations of orientation and the Jeffery equations, together with
the rather general form of relation (1), suggest that one try to use Eq. (1),
which defines a simple anisotropic Ericksenian liquid and which is aver-
aged through the respective major axes distribution function (5) or (6)

for ellipsoidal particles, as the rheological equation of state for dilute
suspensions of rigid ellipsoidal particles

Ty;= — pd;; -+ 2ndy; + 1y {055~ By < Mpfliflilly )
- 20y (g (gt D - di e ) ). (7

In order to determine the rheological constants which appear in the equa-
tion of state (7) for suspensions of particles with an equivalent radius r

> 4-107% m, the effective viscosity y, found from Eq. (7) for a simple
shearing flow (3)

X, Uy=/(X

Fig. 1. Stationary system
of coordinates for analyzing
the motion of a rigid el- .
lipsoid within a shearing By =R -~ ¢ sin2psin® ) + M2 sin? 2psin*8 ) 4y, ( sin?0 ), (8)
flow vy = Kx, vy =vz =0 of 2K 4

a Newtonian liquid.

will be compared with the expression for effective viscosity found by
Jeffery on the basis of a structural concept [4]. We obtain here the fol-
lowing expressions for the rheological constants:

@
= 14+ —— 1, (9
w P*o(\ RE abay )
!"'1301 {(10)
i) o 1 4 )
=2 vy } 7T s (11)
=™ g ( FaB, | By Bo(@ L&)
® 2 s
_ , Ly (12)
Hs = o " (130(a2+b2) bag )

These relations agree with those obtained by Hand [30] on a different premise.

In averaging the expression (7) through the distribution function defined by Eq. (5), we obtain for the
shearing flow

Tyy—T,=0, T, —T,=0,

To—fpte P { CE+1)+2 _Q]ML (1_ L
i 2 (=LY (CpP+D(CH] ’ VE@r+De -+

)} K, Typ= Ty =0,

The distribution function for the orbit constant C has been found experimentally by Mason [31].

In this way, weak suspensions of rigid ellipsoidal particles with r > 4 - 1078 m behave like Newtonian
liquids whose coefficient of the effective viscosity depends on the viscosity of the solvent yy, on the volume
concentration of particles, on the relative dimensions of particles, and on the distribution function of the
orbit constant C.

For suspensions of rigid ellipsoidal particles with r < 108 m the rheological constants are deter-
mined by comparing the effective viscosity from (8) with the expression for effective viscosity based on the
structural concept by Saito [7], which in the determination of effective viscosity accounts ~ unlike the
Jeffery concept — for rotational Brownian motion occurring in suspensions of particles with r < 10~ m.

In this case the expressions for p, uy, py are the same as (9), (11), (12), respectively, while

D a®—b?

(10"
ab®  a*a, -+ b,

by = 120, D,

By averaging the stress tensor (7) components through the distribution function F(y, 0) obtained in
[5], we obtain from Eq. (6) for a shearing flow

(13)

5 3 o2 100

A o2
Tox— Tp=W — (

PR (3 o o ) L 120, o
5 o2--36 ?

3
3 oa—1) 4pp, 2 :
7 )+”2’ 7 o+ 36 5 o136
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it follows from (13), (14), (15),

A o? 3 40 o?
Ty — Ter = Py - a1 D, ——
w =y 02+3s(7 )+”2 7 o*136
% (_3__ 2) o? oy 120D, ¢ | (14)
5 3 ¢?-- 100 5 o-36
6 A ! (1, W
{ . 5 o® + 36 2|~15 ' o% 436
1 60) ‘ (2 L2 A )}
X[ —— — — e K, (15)
(350 42 02—}— 100/ "™\ 3 T35 236
Te=0, T, =0. (16)

(16) that the media considered here distinctly display Newtonian prop-

erties: the Weissenberg effect [32] and the dependence of effective viscosity on the shearing rate. For
the case under consideration here the effective viscosity as a function of ¢ and p has been tabulated by
Sheraga [33] with the averaging done on a computer. Sheraga's results have been confirmed experlmentally

by Yang {34].

Thus, the Newtonian behavior of rigid ellipsoidal particles in dilute suspensions is related to the
rotational Brownian motion and is evident in suspensions of particles with an equivalent radius r < 107% m.

The derived equations (7) with the rheological constants determined, then, make it possible to
analyze various simple flow modes of suspensions containing rigid ellipsoidal particles. Accordingly, the
authors have analyzed simple elongation, flow in a shallow channel, a Poissonian flow, and other kinds of
flow, using for the averaging in (7) the distribution functions determined by Pokrovskii for any arbitrary
flow with small velocity gradients.

The equation of state for media under consideration here and analogous to (7) has been derived by

Pokrovskii [8] from the microrheological point of view (structural concept).

From a comparison of rela-

tion (7) with the stress tensor derived by Pokrovskii, one can draw the following conclusions.

1. In the absence of Brownian motion, the stress tensor (7) is identical to the Pokrovskii stress

tensor.

2. Brownian motion is accounted for by Pokrovskii [8] analogously as Kuhn [6] has done it, while
the authors of this study have used the Saito theory [7] and, consequently, certain differences be-
tween Eq. (7) and the results of the Pokrovskii analysis [8] are in evidence. It is easy to show,
nevertheless, that the expressions for shear viscosity derived on the basis of the respective

theories agree.

This confirms as Saito and Sugita have predicted [35], the equivalency of the

final results obtained on the basis of the Saito theory [7] and the Kuhn theory [6].
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NOTATION

is the stress tensor of a simple anisotropic Ericksenian liquid;
is the isotropic pressure;

is the Kronecker delta;

is the strain rate tensor;

is the velocity vortex tensor;

is the orientation vector;

are the rheological constants;

is the equivalent radius of rigid elliptical particles;

are the major and minor semiaxes of an ellipsoid;

are the velocity components in Cartesian coordinates x, y, z;
are the components of angular velocity in spherical coordinates r, ¢, 6;

is the rotational diffusivity;

is the angular velocity vector;

are the orientation vector components in Cartesian coordinates x, y, z;
is the stress tensor of a suspension containing rigid ellipsoidal particles;
is the symbol of averaging through the distribution function;

is the dynamic viscosity of the solvent;



® is the volume concentration of suspended particles;

g, ags gy Bos Bos By are the functions of ¢ and b defined in the Jeffery theory;
p =a/b;

o = K/ Dy.
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